Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 115(1): 59-71, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972812

RESUMO

It has increasingly become clear over the last two decades that proteins can contain both globular domains and intrinsically unfolded regions that can both contribute to function. Although equally interesting, the disordered regions are difficult to study, because they usually do not crystallize unless bound to partners and are not easily amenable to cryo-electron microscopy studies. NMR spectroscopy remains the best technique to capture the structural features of intrinsically mixed folded proteins and describe their dynamics. These studies rely on the successful assignment of the spectrum, a task not easy per se given the limited spread of the resonances of the disordered residues. Here, we describe the structural properties of ataxin-3, the protein responsible for the neurodegenerative Machado-Joseph disease. Ataxin-3 is a 42-kDa protein containing a globular N-terminal Josephin domain and a C-terminal tail that comprises 13 polyglutamine repeats within a low complexity region. We developed a strategy that allowed us to achieve 87% assignment of the NMR spectrum using a mixed protocol based on high-dimensionality, high-resolution experiments and different labeling schemes. Thanks to the almost complete spectral assignment, we proved that the C-terminal tail is flexible, with extended helical regions, and interacts only marginally with the rest of the protein. We could also, for the first time to our knowledge, observe the structural propensity of the polyglutamine repeats within the context of the full-length protein and show that its structure is stabilized by the preceding region.


Assuntos
Ataxina-3/química , Sequência de Aminoácidos , Ataxina-3/genética , Mutação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Dobramento de Proteína , Soluções
2.
J Biomol NMR ; 69(3): 133-146, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29071460

RESUMO

Description of protein dynamics is known to be essential in understanding their function. Studies based on a well established [Formula: see text] NMR relaxation methodology have been applied to a large number of systems. However, the low dispersion of [Formula: see text] chemical shifts very often observed within intrinsically disordered proteins complicates utilization of standard 2D HN correlated spectra because a limited number of amino acids can be characterized. Here we present a suite of triple resonance HNCO-type NMR experiments for measurements of five [Formula: see text] relaxation parameters ([Formula: see text], [Formula: see text], NOE, cross-correlated relaxation rates [Formula: see text] and [Formula: see text]) in doubly [Formula: see text],[Formula: see text]-labeled proteins. We show that the third spectral dimension combined with non-uniform sampling provides relaxation rates for almost all residues of a protein with extremely poor chemical shift dispersion, the C terminal domain of [Formula: see text]-subunit of RNA polymerase from Bacillus subtilis. Comparison with data obtained using a sample labeled by [Formula: see text] only showed that the presence of [Formula: see text] has a negligible effect on [Formula: see text], [Formula: see text], and on the cross-relaxation rate (calculated from NOE and [Formula: see text]), and that these relaxation rates can be used to calculate accurate spectral density values. Partially [Formula: see text]-labeled sample was used to test if the observed increase of [Formula: see text] [Formula: see text] in the presence of [Formula: see text] corresponds to the [Formula: see text] dipole-dipole interactions in the [Formula: see text],[Formula: see text]-labeled sample.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Bacillus subtilis/enzimologia , Isótopos de Carbono , RNA Polimerases Dirigidas por DNA/química , Hidrogênio , Isótopos de Nitrogênio
3.
Molecules ; 21(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763518

RESUMO

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Assuntos
Química Farmacêutica/métodos , Proteínas/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Epigênese Genética , Relação Estrutura-Atividade , Biologia de Sistemas
5.
J Magn Reson ; 266: 23-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27003380

RESUMO

Standard spectral density mapping protocols, well suited for the analysis of (15)N relaxation rates, introduce significant systematic errors when applied to (13)C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and (13)C frequencies can be obtained from data acquired at three magnetic fields for uniformly (13)C-labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Interpretação Estatística de Dados , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/química , Processamento de Sinais Assistido por Computador , Campos Magnéticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
J Biomol NMR ; 64(1): 53-62, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26685997

RESUMO

Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely (1)JCH and (3)JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.


Assuntos
Campos Magnéticos , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Teoria Quântica
7.
Chemistry ; 21(49): 17933-43, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26493955

RESUMO

Intrinsic structural features and energetics of nucleotides containing variously fluorinated sugars as potential building blocks of DNA duplexes and quadruplexes are explored systematically using the modern methods of density functional theory (DFT) and quantum chemical topology (QCT). Our results suggest that fluorination at the 2'-ß or 2'-α,ß positions somewhat stabilizes in vacuo the AI relative to the BI conformations. In contrast, substitution of the CF2 group for the O4' atom (O4'-CF2 modification) leads to a preference of the BI relative to AI DNA-like conformers. All the studied modifications result in a noticeable increase in the stability of the glycosidic bond [estimated by the relaxed force constants (RFC) approach], with particularly encouraging results for the O4'-CF2 derivative. Consequently, the O4'-CF2 modified systems are suggested and explored as promising scaffolds for the development of duplex and quadruplex structures with reduced propensity to form abasic lesions and to undergo DNA damage.


Assuntos
DNA/química , Glicosídeos/química , Ácidos Nucleicos/química , Nucleotídeos/química , Dano ao DNA , Quadruplex G , Estrutura Molecular , Conformação de Ácido Nucleico
8.
PLoS One ; 10(3): e0119899, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742002

RESUMO

Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
9.
Nucleic Acids Res ; 42(22): 14031-41, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25428355

RESUMO

Abasic (AP) lesions are the most frequent type of damages occurring in cellular DNA. Here we describe the conformational effects of AP sites substituted for 2'-deoxyadenosine in the first (ap7), second (ap13) or third (ap19) loop of the quadruplex formed in K(+) by the human telomere DNA 5'-d[AG3(TTAG3)3]. CD spectra and electrophoresis reveal that the presence of AP sites does not hinder the formation of intramolecular quadruplexes. NMR spectra show that the structural heterogeneity is substantially reduced in ap7 and ap19 as compared to that in the wild-type. These two (ap7 and ap19) sequences are shown to adopt the hybrid-1 and hybrid-2 quadruplex topology, respectively, with AP site located in a propeller-like loop. All three studied sequences transform easily into parallel quadruplex in dehydrating ethanol solution. Thus, the AP site in any loop region facilitates the formation of the propeller loop. Substitution of all adenines by AP sites stabilizes the parallel quadruplex even in the absence of ethanol. Whereas guanines are the major determinants of quadruplex stability, the presence or absence of loop adenines substantially influences quadruplex folding. The naturally occurring adenine-lacking sites in the human telomere DNA can change the quadruplex topology in vivo with potentially vital biological consequences.


Assuntos
Adenina/química , Dano ao DNA , Quadruplex G , Telômero/química , Guanina/química , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Potássio/química
10.
Biophys J ; 107(9): 2185-94, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25418103

RESUMO

Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3?, by (31)P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3? binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3? one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3? dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3? dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3? dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3? dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system.


Assuntos
Proteínas 14-3-3/química , Peptídeos/química , Tirosina 3-Mono-Oxigenase/química , Algoritmos , Simulação por Computador , Dimerização , Epitopos/química , Escherichia coli , Humanos , Isoenzimas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Isótopos de Fósforo , Fosforilação , Ligação Proteica , Termodinâmica , Tirosina 3-Mono-Oxigenase/genética
11.
Protein Eng Des Sel ; 27(12): 463-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344682

RESUMO

Amino acid sequence and environment are the most important factors determining the structure, stability and dynamics of proteins. To evaluate their roles in the process of folding, we studied a retroversion of the well-described Trp-cage miniprotein in water and 2,2,2-trifluoroethanol (TFE) solution. We show, by circular dichroism spectroscopy and nuclear magnetic resonance (NMR) measurement, that the molecule has no stable structure under conditions in which the Trp-cage is folded. A detectable stable structure of the retro Trp-cage, with the architecture similar to that of the original Trp-cage, is established only upon addition of TFE to 30% of the total solvent volume. The retro Trp-cage structure shows a completely different pattern of stabilizing contacts between amino acid residues, involving the guanidinium group of arginine and the aromatic group of tryptophan. The commonly used online prediction methods for protein and peptide structures Robetta and PEP-FOLD failed to predict that the retro Trp-cage is unstructured under default prediction conditions. On the other hand, both methods provided structures with a fold similar to those of the experimentally determined NMR structure in water/TFE but with different contacts between amino acids.


Assuntos
Arginina/química , Peptídeos/química , Trifluoretanol/química , Triptofano/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/síntese química , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Água/química
12.
J Struct Biol ; 187(2): 174-186, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24937760

RESUMO

The crystal structure of the N-terminal domain of the RNA polymerase δ subunit (Nδ) from Bacillus subtilis solved at a resolution of 2.0Å is compared with the NMR structure determined previously. The molecule crystallizes in the space group C222(1) with a dimer in the asymmetric unit. Importantly, the X-ray structure exhibits significant differences from the lowest energy NMR structure. In addition to the overall structure differences, structurally important ß sheets found in the NMR structure are not present in the crystal structure. We systematically investigated the cause of the discrepancies between the NMR and X-ray structures of Nδ, addressing the pH dependence, presence of metal ions, and crystal packing forces. We convincingly showed that the crystal packing forces, together with the presence of Ni(2+) ions, are the main reason for such a difference. In summary, the study illustrates that the two structural approaches may give unequal results, which need to be interpreted with care to obtain reliable structural information in terms of biological relevance.


Assuntos
Cristalografia por Raios X/métodos , RNA Polimerases Dirigidas por DNA/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína
14.
J Magn Reson ; 241: 41-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24656079

RESUMO

Proteins, which, in their native conditions, sample a multitude of distinct conformational states characterized by high spatiotemporal heterogeneity, most often termed as intrinsically disordered proteins (IDPs), have become a target of broad interest over the past 15years. With the growing evidence of their important roles in fundamental cellular processes, there is an urgent need to characterize the conformational behavior of IDPs at the highest possible level. The unique feature of NMR spectroscopy in the context of IDPs is its ability to supply details of their structural and temporal alterations at atomic-level resolution. Here, we briefly review recently proposed NMR-based strategies to characterize transient states populated by IDPs and summarize the latest achievements and future prospects in methodological development. Because low chemical shift dispersion represents the major obstacle encountered when studying IDPs by nuclear magnetic resonance, particular attention is paid to techniques allowing one to approach the physical limits of attainable resolution.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Algoritmos , Animais , Humanos , Conformação Proteica
15.
J Biomol NMR ; 58(3): 193-207, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24515886

RESUMO

Spectral density mapping represents the method of choice for investigations of molecular motions of intrinsically disordered proteins (IDPs). However, the current methodology has been developed for well-folded proteins. In order to find conditions for a reliable analysis of relaxation of IDPs, accuracy of the current reduced spectral density mapping protocols applied to IDPs was examined and new spectral density mapping methods employing cross-correlated relaxation rates have been designed. Various sources of possible systematic errors were analyzed theoretically and the presented approaches were tested on a partially disordered protein, delta subunit of bacterial RNA polymerase. Results showed that the proposed protocols provide unbiased description of molecular motions of IDPs and allow to separate slow exchange from fast dynamics.


Assuntos
Proteínas Intrinsicamente Desordenadas/análise , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Dobramento de Proteína
16.
Phys Chem Chem Phys ; 16(5): 2072-84, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24343126

RESUMO

The study aimed to cast light on the structure and internal energetics of guanine- and xanthine-based model DNA quadruplexes and the physico-chemical nature of the non-covalent interactions involved. Several independent approaches were used for this purpose: DFT-D3 calculations, Quantum Theory of Atoms in Molecules, Natural Bond Orbital Analysis, Energy Decomposition Analysis, Compliance Constant Theory, and Non-Covalent Interaction Analysis. The results point to an excellent degree of structural and energetic compatibility between the two types of model quadruplexes. This fact stems from both the structural features (close values of van der Waals volumes, pore radii, geometrical parameters of the H-bonds) and the energetic characteristics (comparable values of the energies of formation). It was established that hydrogen bonding makes the greatest (∼50%) contribution to the internal stability of the DNA quadruplexes, whereas the aromatic base stacking and ion coordination terms are commensurable and account for the rest. Energy decomposition analysis performed for guanine (Gua) and xanthine (Xan) quartets B4 and higher-order structures consisting of two or three stacked quartets indicates that whereas Gua structures benefit from a high degree of H-bond cooperativity, Xan models are characterized by a more favorable and cooperative π-π stacking. The results of electron density topological analysis show that Na(+)/K(+) ion coordination deeply affects the network of non-covalent interactions in Gua models due to the change in the twist angle between the stacked tetrads. For Xan models, ion coordination makes tetrads in stacks more planar without changing the twist angle. Therefore, the presence of the ion seems to be essential for the formation of planar stacks in Xan-based DNA quadruplexes. Detailed study of the nature of ion-base coordination suggests that this interaction has a partially covalent character and cannot be considered as purely electrostatic. Investigation of the H-bond and ion-base coordination strengths by various independent approaches agrees well with the results of QTAIM analysis.


Assuntos
Quadruplex G , Guanina/química , Modelos Moleculares , Teoria Quântica , Xantina/química , Ligação de Hidrogênio
17.
J Chem Theory Comput ; 10(12): 5353-65, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583219

RESUMO

Structural and energetic features of artificial DNA quadruplexes consisting of base tetrads and their stacks with Na(+)/K(+) ion(s) inside the central pore and incorporating halogenated derivatives of xanthine, 8-fluoro-9-deazaxanthine (FdaX), 8-chloro-9-deazaxanthine (CldaX), 8-bromo-9-deazaxanthine (BrdaX), or 8-iodo-9-deazaxanthine (IdaX), have been investigated by modern state-of-the-art computational tools. The DNA (or RNA) quadruplex models based on 8-halo-9-deazaxanthines are predicted to be more stable relative to those with unmodified xanthine due to the increased stabilizing contributions coming from all three main types of weak interactions (H-bonding, stacking, and ion coordination). Methods for analyzing the electron density are used to understand the nature of forces determining the stability of the system and to gain a predictive potential. Quadruplex systems incorporating polarizable halogen atoms (chlorine, bromine, or iodine) benefit significantly from the stabilizing stacking between the individual tetrads due to an increased dispersion contribution as compared to xanthine and guanine, natural references used. Ion coordination induces a significant rearrangement of electron density in the quadruplex stem as visualized by electron deformation density (EDD) and analyzed by ETS-NOCV and Voronoi charges. Na(+) induces larger electron polarization from the quadruplex toward the ion, whereas K(+) has a higher propensity to electron sharing (identified by QTAIM delocalization index). We expect that our results will contribute to the development of novel strategies to further modify and analyze the natural G-quadruplex core.

18.
Chembiochem ; 14(14): 1772-9, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23868186

RESUMO

The partially disordered δ subunit of RNA polymerase was studied by various NMR techniques. The structure of the well-folded N-terminal domain was determined based on inter-proton distances in NOESY spectra. The obtained structural model was compared to the previously determined structure of a truncated construct (lacking the C-terminal domain). Only marginal differences were identified, thus indicating that the first structural model was not significantly compromised by the absence of the C-terminal domain. Various (15) N relaxation experiments were employed to describe the flexibility of both domains. The relaxation data revealed that the C-terminal domain is more flexible, but its flexibility is not uniform. By using paramagnetic labels, transient contacts of the C-terminal tail with the N-terminal domain and with itself were identified. A propensity of the C-terminal domain to form ß-type structures was obtained by chemical shift analysis. Comparison with the paramagnetic relaxation enhancement indicated a well-balanced interplay of repulsive and attractive electrostatic interactions governing the conformational behavior of the C-terminal domain. The results showed that the δ subunit consists of a well-ordered N-terminal domain and a flexible C-terminal domain that exhibits a complex hierarchy of partial ordering.


Assuntos
Bacillus subtilis/enzimologia , RNA Polimerases Dirigidas por DNA/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática
19.
J Biomol NMR ; 56(4): 291-301, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23877929

RESUMO

Microtubule-associated proteins (MAPs) are abundantly present in axons and dendrites, and have been shown to play crucial role during the neuronal morphogenesis. The period of main dendritic outgrowth and synaptogenesis coincides with high expression levels of one of MAPs, the MAP2c, in rats. The MAP2c is a 49.2 kDa intrinsically disordered protein. To achieve an atomic resolution characterization of such a large protein, we have developed a protocol based on the acquisition of two five-dimensional (13)C-directly detected NMR experiments. Our previously published 5D CACONCACO experiment (Novácek et al. in J Biomol NMR 50(1):1-11, 2011) provides the sequential assignment of the backbone resonances, which is not interrupted by the presence of the proline residues in the amino acid sequence. A novel 5D HC(CC-TOCSY)CACON experiment facilitates the assignment of the aliphatic side chain resonances. To streamline the data analysis, we have developed a semi-automated procedure for signal assignments. The obtained data provides the first atomic resolution insight into the conformational state of MAP2c and constitutes a model for further functional studies of MAPs.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Glicina , Dados de Sequência Molecular , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Ratos
20.
J Bacteriol ; 195(11): 2603-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23543716

RESUMO

RNA polymerase (RNAP) is an extensively studied multisubunit enzyme required for transcription of DNA into RNA, yet the δ subunit of RNAP remains an enigmatic protein whose physiological roles have not been fully elucidated. Here, we identify a novel, so far unrecognized function of δ from Bacillus subtilis. We demonstrate that δ affects the regulation of RNAP by the concentration of the initiating nucleoside triphosphate ([iNTP]), an important mechanism crucial for rapid changes in gene expression in response to environmental changes. Consequently, we demonstrate that δ is essential for cell survival when facing a competing strain in a changing environment. Hence, although δ is not essential per se, it is vital for the cell's ability to rapidly adapt and survive in nature. Finally, we show that two other proteins, GreA and YdeB, previously implicated to affect regulation of RNAP by [iNTP] in other organisms, do not have this function in B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Adaptação Fisiológica , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Expressão Gênica , Técnicas de Inativação de Genes , Viabilidade Microbiana , Regiões Promotoras Genéticas/genética , Subunidades Proteicas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...